文章编号:1000-324X(2022)05-0547-07

功能化石墨烯担载型 AuPd 纳米催化剂增强甲酸制氢反应

王虹力¹,王 男¹,王丽莹¹,宋二红²,赵占奎¹

(1. 长春工业大学 材料科学与工程学院,先进结构材料教育部重点实验室,长春 130012; 2. 中国科学院 上海硅酸盐研究所,高性能陶瓷和超微结构国家重点实验室,上海 200050)

摘要:甲酸(FA)因具有储氢量高、易加注等优点而成为极具应用前景的新型储氢材料,寻求高效率催化剂对于解决甲酸制氢反应动力学缓慢的问题尤为重要。本工作以聚乙烯亚胺修饰石墨烯(PEI-rGO)作为催化剂衬底,通过湿化学法制备 PEI-rGO 担载型 AuPd 纳米复合材料(Au_{0.3}Pd_{0.7}/PEI-rGO)。Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂在催化 FA 制氢的反应中表现出极其优异的活性,在无添加剂辅助下的转化频率(TOF)为 2357.5 mol_{H2}·mol_{catalyst}⁻¹·h⁻¹,高于大多数相同反应条件下的异相催化剂。这归因于 PEI-rGO 衬底与 AuPd 纳米颗粒之间的强相互作用对金属活性组分的尺寸、分散度和电子结构的调控。此外,循环测试结果表明该催化剂的稳定性良好。

关键 词:功能化石墨烯;纳米金属催化剂;甲酸;制氢反应

中图分类号: TQ174 文献标志码: A

Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts

WANG Hongli¹, WANG Nan¹, WANG Liying¹, SONG Erhong², ZHAO Zhankui¹

(1. Key Laboratory of Advanced Structural Materials, Ministry of Education, School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China; 2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China)

Abstract: Formic acid (FA) is considered as a new type of hydrogen storage material with great application prospect due to its high hydrogen content and easy recharging as a liquid. Seeking high efficiency catalysts to solve the problem of slow reaction kinetics of hydrogen evolution from FA is vital. In this work, polyethyleneimine modified graphene (PEI-rGO) was used as the catalyst substrate, and PEI-rGO supported AuPd nanocomposite material (Au_{0.3}Pd_{0.7}/PEI-rGO) was prepared by wet chemical method. The Au_{0.3}Pd_{0.7}/PEI-rGO catalyst exhibits remarkable activity for the hydrogen generation from FA, affording an unprecedented turnover frequency (TOF) of 2357.5 mol_{H₂}· mol_{catalyst}⁻¹·h⁻¹ without any additives, which is superior to most heterogeneous catalysts under similar reaction conditions. Its excellent catalytic performance is attributed to the strong interaction between PEI-rGO substrate and AuPd nanoparticles, which regulates the size, dispersion and electronic structure of metal active

基金项目:国家自然科学基金(51601018, 51671035); 上海市自然科学基金面上项目(21ZR1472900); 吉林省教育厅"十三 五"科学技术项目(JJKH20200660KJ)

收稿日期: 2021-05-17; 收到修改稿日期: 2021-07-12; 网络出版日期: 2021-07-12

National Natural Science Foundation of China (51601018, 51671035); Shanghai Natural Science Foundation of China (21ZR1472900); Science and Technology Research Project of the Education Department of Jilin Province (JJKH20200660KJ)

作者简介: 王虹力(1989-), 女, 副教授. E-mail: wanghongli@ccut.edu.cn

WANG Hongli (1989-), female, associate professor. E-mail: wanghongli@ccut.edu.cn

通信作者: 宋二红, 副研究员. E-mail: ehsong@mail.sic.ac.cn; 赵占奎, 教授. E-mail: zhaozk@ccut.edu.cn SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cn; ZHAO Zhankui, professor. E-mail: zhaozk@ccut. edu.cn

components. Furthermore, the recycle test result shows that the catalyst has good stability.

Key words: functionalized graphene; nano metal catalyst; formic acid; hydrogen generation reaction

化石能源的广泛使用带来的能源枯竭和环境污 染等问题引起了越来越多研究者的关注和思考^[1-2]。 氢能作为高效清洁能源具有燃烧性能好、产热值高 和无毒无污染等独特的性质,在各种新能源中脱颖 而出^[3]。与传统的高压气态储氢和低温液态储氢相比, 储氢材料兼具高存储密度和高安全性等优点^[4]。甲酸 (HCO₂H, FA)来源丰富,含氢量高(43 g·kg⁻¹),且易于 填装液体燃料电池,是一种具有巨大应用潜力的储 氢材料^[5]。在催化剂的作用下,FA 可以通过脱氢反应 (反应(1))生成氢气(H₂)和二氧化碳(CO₂),也可以通 过脱水反应(反应(2))生成水(H₂O)和一氧化碳(CO)^[5], 其中,反应(1)是人们期望的路径,而反应(2)生成的 CO 会使催化剂中毒而失去活性,需要抑制。

$$HCO_2H(1) \rightarrow H_2(g) + CO_2(g)$$
 (1)

$$HCO_2H(1) \rightarrow H_2O(1) + CO(g)$$
 (2)

催化剂是决定 FA 分解路径的关键因素,在目前报道的催化剂中,单组元 Pd、Au或 Pd 与其他贵金属(如 Au、Ag等)^[6]结合的二元或三元纳米材料对于 FA 分解表现出良好的催化活性。因此本研究选用 Au 来调节 Pd 周围的电子结构使其整体作为活性主体。然而单独使用金属纳米粒子会由于表面能过大而在液相中产生团聚现象,使用适合的衬底来负载金属纳米颗粒(NPs)是改善分散性及获取细小、均匀粒径尺寸的一种行之有效的方法^[7-8]。在此基础上,对衬底进行功能化修饰,可以有效促进衬底与金属活性组分之间的相互作用,从而提升担载型催化剂整体的催化性能^[9]。

石墨烯(rGO)是一种以碳原子 sp2杂化形成的近 似蜂窝状的结构为基础,在表面缺陷位置和边缘处 存在羟基、羧基和环氧基等官能团的二维材料^[10-12]。 正是因为这些表面缺陷以及官能团,使得 rGO 易于 进行功能化修饰。由于氮和金属之间的配位作用, 外来的氨基官能团可为附着金属前驱体提供帮助, 使得金属 NPs 在衬底上高度分散^[13],可以有效地改 善金属纳米颗粒在液相中的团聚现象,同时增强金 属纳米颗粒与衬底之间的相互作用,进一步增强催 化性能。基于此,Rana 等^[14]使用 *N*-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷修饰 rGO,再将金属纳米粒 子负载到其表面,使得该催化剂具有优异的催化活 性及良好的循环稳定性。Imani 等^[15]在 rGO 表面修 饰八精氨酸(R8),得到了负载率高且分散性和生物 相容性较好的衬底材料。 鉴于聚乙烯亚胺(PEI)中的胺基能够与 rGO 的羧 基等含氧基团以酰胺键等形式结合^[16],本研究通过 湿化学法成功制备 PEI 功能化 rGO 担载 AuPd NPs (Au_{0.3}Pd_{0.7}/PEI-rGO),并将其作为催化剂应用在 FA 分解制氢反应中。在 323 K 且无添加剂的情况下,对 Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂催化 FA 分解制氢反应速 率和循环稳定性进行探究;计算反应激活能(*E*_a); 初步分析催化活性增强机制及反应机理。

1 实验方法

1.1 催化剂制备

实验中所用药品均购自国药集团化学试剂公司。首先用 Hummers 法制备氧化石墨烯(GO)^[17], 然后将 200 mg PEI 与 35 mL GO (1.43 g/L)充分混合,并在 80 ℃下搅拌 2 h,得到 PEI-rGO 溶液。随后取 5 mL PEI-rGO 分散液,加入 1.5 mL HAuCl₄ (0.02 mol/L)和 2.8 mL Na₂PdCl₄ (0.025 mol/L),混合均匀后加入 40 mg NaBH₄继续磁力搅拌 30 min,离心后得到 Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂。此外,采用与Au_{0.3}Pd_{0.7}/PEI-rGO 类似的方法制备。无 PEI 修饰的Au_{0.3}Pd_{0.7}/PEI-rGO 和无 PEI-rGO 衬底的 Au_{0.3}Pd_{0.7} NPs Au_xPd_{1-x}/PEI-rGO (x=0, 0.1, 0.7, 0.9, 1.0)的制备方法与 Au_{0.3}Pd_{0.7}/PEI-rGO (即 x=0.3)相似,通过调整 HAuCl₄和 Na₂PdCl₄溶液用量调节 x。

1.2 催化活性测试

将制备好的催化剂放置于圆底烧瓶中,加入 5.0 mL FA 溶液(1.0 mol/L),在磁力搅拌下,用气体 滴定管测量反应过程中的气体产量。在不同温度 (303,313,323 和 333 K)下进行催化反应。在 323 K 下 FA 充分反应后,再向烧瓶中加入 5.0 mL FA 溶液 进行循环实验。

1.3 催化剂表征

采用 X 射线衍射仪(XRD, Rigaku RINT-2000) 对样品进行物相分析;采用傅里叶变换红外光谱仪 (Nicolet IS50)检测样品的官能团;采用透射电子显微 镜(TEM, FEI Talos F200S)观察样品形貌、分布及结 构;采用 X 射线光电子能谱仪(XPS, ESCALABMKLL) 分析样品的电子结构;采用电感耦合等离子体原子 发射光谱仪(ICP, Thermo TJA 6000)对样品成分进行 定量分析。

1.4 计算方法

FA 分解制氢反应在催化剂作用下的转化频率 (TOF)及激活能(*E*_a)计算方法如下:

$$\text{TOF} = \frac{P_{\text{atm}}V_{\text{H}_2} / RT}{n_{\text{catalyst}}t}$$
(3)

其中, TOF单位为 mol_{H_2} ·mol_{catalyst}⁻¹·h⁻¹, P_{atm} 是标准大 气压(10⁵ Pa), V_{H_2} 是转化率达到 50%时产生 H₂的体 积(mL), *R* 是通用气体常数(8.314 J·mol⁻¹·K⁻¹), *T* 是 室温(298 K), $n_{catalyst}$ 是使用 ICP 测得的 AuPd 的摩尔 数(mmol), *t* 是转化率达到 50%的反应时间(h)。温度 与 TOF 值之间的关系遵循 Arrhenius 特性, Arrhenius 方程式如下:

$$\ln \text{TOF} = \ln A - E_a / RT \tag{4}$$

其中A是指前因子。

2 结果与讨论

2.1 表征结果分析

图 1(a)的 XRD 图谱中 PEI 修饰后 GO 在 2θ =10° 的(002)衍射峰消失,而在 2θ =15°~25°之间出现一个 无定型峰,表明经 PEI 修饰之后,GO 被还原为 rGO^[18]。图 1(b)的 FT-IR 谱图中,与 GO 相比, PEI-rGO 保留了 GO 基本峰型,在~1240、~1620 和 ~3400 cm⁻¹处新增峰分别对应 C-N 的伸缩振动和 N-H 的弯曲和伸缩振动,表明氨基成功修饰到 rGO 上^[19]。

从图2的TEM照片中可以观察Au0.3Pd0.7/PEI-rGO

(b) (a) Transmission / (a.u.) GO ntensity / (a.u.) PEI-rGC GO PEI-rGO N-H 10 20 30 40 50 60 70 80 4000 3500 3000 2500 2000 1500 1000 $2\theta/(^{\circ})$ Wavenumber / cm⁻¹

Fig. 2 TEM images, XRD pattern and EDX spectrum of Au_{0.3}Pd_{0.7}/PEI-rGO

(a-b) TEM images and (c)HRTEM image for $Au_{0.3}Pd_{0.7}/PEI$ -rGO with inset in (b) showing corresponding histogram of particle size distribution, (d) XRD pattern and (e) EDX pattern for $Au_{0.3}Pd_{0.7}/PEI$ -rGO

的形貌、结构、颗粒的尺寸及分散度。如图 2(a)所 示, PEI-rGO 为褶皱的薄膜形态, 说明氨基修饰不会 改变 rGO 的基本形貌。从图 2(b)中可以看到 AuPd NPs 均匀地分散在 PEI-rGO 上, 平均粒径尺寸为 3.88 nm。高分辨 TEM(HRTEM)照片中 NPs 的晶面 间距为 0.230 nm (图 2(c)), 该数值介于面心立方(fcc) Au (111)晶面间距与 fcc Pd (111)晶面间距之间, 说 明 AuPd NPs 在 Au0.3Pd0.7/PEI-rGO 中以合金结构形 式存在^[20]。从图 2(d)的 XRD 图谱可见, 20=15°~25° 之间的峰依旧存在,说明 PEI-rGO 衬底的结构稳定。 此外, 相对于 fcc Au (111), Au_{0.3}Pd_{0.7}/PEI-rGO 的峰 位向 fcc Pd (111)偏移, 进一步证明 AuPd NPs 具有 合金结构且附着在 PEI-rGO 衬底上, 与 HRTEM 的 结果高度吻合。能谱(EDX)检测所得的结果证明样 品中除了 Au、Pd 以外, 还存在 N, 这进一步证实 N 成功修饰到 Au_{0.3}Pd_{0.7}/PEI-rGO 中(图 2(e))。ICP 测 定结果中, Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂中 Au 与 Pd 的 原子比为 0.298:0.701, 这与 3:7 的理论值相符。

为调查 Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂的电子结构, 对 催化剂进行 XPS 分析。如图 3(a)所示, 与 Au_{0.3}Pd_{0.7}/rGO 相比, Au_{0.3}Pd_{0.7}/PEI-rGO 在 399 eV 处新增了 1 个 N 峰。通过进一步分析可知, N 的化学状态包括 C=N (398.6 eV)和 C-NH₂ (399.4 eV)^[21](图 3(b)), 这表明 PEI 成功修饰到 Au_{0.3}Pd_{0.7}/PEI-rGO 中。从图 3(c~d) 可见, Pd、Au 以 Pd⁰、Au⁰价态存在,少量的 Pd²⁺、 Au⁺是由于 XPS 测试样品在处理过程中暴露于空气 中所致。此外,相比于 Au_{0.3}Pd_{0.7}/rGO, Au_{0.3}Pd_{0.7}/ PEI-rGO 中的 Pd3d_{5/2}峰出现偏移,类似的情况也出 现于 Au4f_{7/2} XPS 分谱中,这表明 Au_{0.3}Pd_{0.7} NPs 和 rGO 衬底之间的相互作用在 PEI 修饰衬底以后显著 增强,从而导致 PEI-rGO 和 AuPd NPs 之间发生电 子转移,改变了 AuPd 电子结构,有助于提升其催化 性能。

2.2 催化性能分析

图 4(a)对比了 Au_{0.3}Pd_{0.7}/PEI-rGO、Au_{0.3}Pd_{0.7}/rGO 与 Au_{0.3}Pd_{0.7} 这三种催化剂催化 FA 分解制氢的催化 活性,由图中可见,Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂的活 性最高,在 323 K 且无添加剂的条件下,3 min 内产 生 224 mL 气体(此气体产量与 FA 分解反应(1)的理 论产量吻合),说明 Au_{0.3}Pd_{0.7}/PEI-rGO 通过反应(1)高 效地将 FA 完全分解为 H₂和 CO₂,并抑制了反应(2)。

相比而言,在相同外界条件下,Au_{0.3}Pd_{0.7}/rGO 与 Au_{0.3}Pd_{0.7}催化的反应仅产生了 84 和 30 mL 气体, 分别用时 82 和 13 min。经计算,Au_{0.3}Pd_{0.7}/PEI-rGO 在 323 K 下的 TOF 值为 2357.5 mol_{H2}·mol_{catalyst}⁻¹·h⁻¹, 不仅明显优于 Au_{0.3}Pd_{0.7}/ rGO 和 Au_{0.3}Pd_{0.7} (图 4(b)),

图 4 Au_{0.3}Pd_{0.7}/PEI-rGO、Au_{0.3}Pd_{0.7}/rGO 与 Au_{0.3}Pd_{0.7}催化剂在 FA 分解制氢反应中的催化性能对比 Fig. 4 Comparison of the catalytic performances for hydrogen evolution from FA dehydrogenation reaction of Au_{0.3}Pd_{0.7}/PEI-rGO, Au_{0.3}Pd_{0.7}/rGO and Au_{0.3}Pd_{0.7} catalysts

(a) Volume of gas *versus* time for the dehydrogenation of FA (1 mol/L, 5 mL) catalyzed by (1) Au_{0.3}Pd_{0.7}/PEI-rGO, (2) Au_{0.3}Pd_{0.7}/rGO and (3) Au_{0.3}Pd_{0.7}; (b) Corresponding TOF values

表 1

不同 FA 脱氢催化剂的 TOF

Table 1 TOF of different catalysts for FA dehydrogenation			
Catalyst	Temperature/K	$n_{\rm catalyst}/n_{\rm FA}$	$\text{TOF}/(\text{mol}_{\text{H}_2} \cdot \text{mol}_{\text{catalyst}}^{-1} \cdot \mathbf{h}^{-1})$
Pd-NPs@TA-CoP ^[22]	328	0.013	233.0 ^a
Pd@ED/Cr-MIL-101 ^[23]	328	0.003	583.0 ^b
Ni _{0.4} Pd _{0.6} /NH ₂ -N-rGO ^[10]	298	0.020	954.3 ^a
$Pd_{0.7}Ag_{0.3}/CeO_x-NPC^{[24]}$	323	0.008	1101.9 ^a
Pd@TB-POP ^[7]	323	0.100	1344.0 ^b
Pd/ImIP-2 ^[25]	323	0.008	1593.0 ^b
AuPd/n-CNS ^[26]	333	0.020	1896.0 ^a
PdAg-CeO ₂ ^[27]	303	0.033	2272.8 ^a
Au _{0.3} Pd _{0.7} /PEI-rGO	323	0.020	2357.5 ^a
Pd/MSC-30 ^[28]	323	0.013	2623.0 ^a
Pd-Co ₂ P/NPC ^[13]	323	0.026	2980.0 ^b

 $n_{\text{catalyst}}/n_{\text{FA}}$ represents the molar ratio of catalyst to FA; a: Initial TOF values calculated based on total metal; b: Initial TOF values calculated based on total Pd atoms.

而且超过了目前报道的大多数 FA 分解制氢异相催 化剂^[7,10,22-28] (表 1),这说明氨基功能化的 rGO 担载 型 AuPd NPs 具有非常优越的催化性能。这一方面 归因于 PEI-rGO 对于 AuPd NPs 的锚定作用和限域 作用使得小尺寸金属 NPs 在 PEI-rGO 衬底上弥散分 布,从而增加了反应活性位点。另一方面氨基化的 PEI-rGO 衬底与金属活性组元之间的电子转移有利 于调控 FA 在催化剂表面的吸附能^[29],进而增强 Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂对 FA 分解制氢反应的催 化活性。

为了进一步明确 $Au_{0.3}Pd_{0.7}/PEI$ -rGO 的动力学 性能,进行了一系列变温催化 FA 制氢实验。图 5(a) 显示了 $Au_{0.3}Pd_{0.7}/PEI$ -rGO 在不同温度下的催化活 性,其结果表明,随着反应温度上升,反应速率提 高。根据此结果计算出 $Au_{0.3}Pd_{0.7}/PEI$ -rGO 催化剂的 E_a 为 35.93 kJ/mol (图 5(b)),小于相同或相似反应条 件下大多数 FA 分解制氢异相催化剂的 $E_a^{[7,10,25]}$,这 进一步表明 Au0.3Pd0.7/PEI-rGO 催化剂在无添加剂 存在的温和条件下具有突出的催化性能。此外, 测试 了催化剂活性组元的成分配比对于其催化活性的影 响。图 5(c)显示了不同 Au/Pd 比例的 Au_xPd_{1-x}/PEI-rGO 催化剂对于 FA 分解效率的影响, 经对比得到 Au 与 Pd 的最佳原子比为 Au: Pd = 3:7。此催化活性的增 强机制为采用合金化引入比 Pd 功函低的 Au, 通过 合金中 AuPd 组元间的电子协同作用, 调控 FA 在催 化剂表面的吸附能,活化 C-H 键,从而抑制反 应(2)^[30],进而提升催化活性。根据上述分析和其他 相关研究结果^[31], Au_{0.3}Pd_{0.7}/PEI-rGO催化FA分解制 氢反应机理可以解释如下:来自 PEI 的氨基作为电 子供体, 在反应中起到质子吸收剂的作用, 促进 FA 分子中的 O-H 键断裂, 形成[H₂NH]⁺。同时, 富电子 的金属活性组元调控 HCOO*的桥位吸附能, 活化 C-H, 以生成 CO₂和金属氢化物。最后, 金属氢化物 与[H₂NH]⁺反应生成了 H₂。

图 5 (a) Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂在不同温度下催化 FA 脱氢的气体体积与时间的关系曲线, (b) Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂的 InTOF 与 1/T 的关系拟合直线, (c) 在 323 K 下,不同比例金属组分的 Au_xPd_{1-x}/PEI-rGO(x=0, 0.1, 0.3, 0.7, 0.9, 1.0)催化 FA 脱氢的 气体体积与时间的关系曲线, (d) Au_{0.3}Pd_{0.7}/PEI-rGO 催化 FA(1.0 mol/L, 5.0 mL)分解制氢的循环稳定性测试 Fig.5 (a) Volume of gas *versus* time for the dehydrogenation of FA at different temperatures over Au_{0.3}Pd_{0.7}/PEI-rGO catalyst; (b) Arrhenius plot (InTOF *versus* 1/T) for Au_{0.3}Pd_{0.7}/PEI-rGO; (c) Volume of gas *versus* time for the dehydrogenation of FA at different ratios of Au_xPd_{1-x}/PEI-rGO (x=0, 0.1, 0.3, 0.7, 0.9, 1.0) at 323 K; (d) Durability tests of Au_{0.3}Pd_{0.7}/PEI-rGO towards the decomposition of FA (1.0 mol/L, 5.0 mL)

催化剂的循环稳定性对于其在实际生产生活中的推广应用具有重要影响。如图 5(d)所示,在经过 5 次循环后,Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂催化 FA 分解 制氢反应仍保持 224 mL 的气体产量,完成反应时 间从第一轮循环反应的 3 min 略延长至第五轮反应 的 4 min,这说明 Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂在温和 的反应过程中可以保持较为稳定的状态,具有良好 的循环稳定性。

3 结论

本研究采用湿化学法制备 PEI-rGO 衬底担载型 AuPd 纳米催化剂,并应用在催化 FA 分解制氢领 域。结果表明,制备得到的 AuPd NPs 颗粒细小均匀 (3.88 nm),分散性良好。在 323 K 且无添加剂的情 况下,Au_{0.3}Pd_{0.7}/PEI-rGO 催化剂具有优异的催化活 性和良好的循环稳定性,其催化反应的 TOF 高达 2357.5 mol_{H2}·mol_{catalyst}⁻¹·h⁻¹, *E*_a低至 35.93 kJ/mol,催 化活性优于目前报道的大多数相似反应条件下的 FA 分解制氢异相催化剂。这归因于 PEI-rGO 衬底 与 AuPd NPs 之间的强相互作用对 NPs 的尺寸、分 散度和电子结构的调控。此工作为甲酸制氢用高效 率催化剂的设计开拓了新的思路,同时为异相催化 剂在能源与环境领域的应用提供了更多机会。

参考文献:

- LI H, ZHOU Y, ZHAO M, *et al.* Suppressed shuttle *via* inhibiting the formation of long-chain lithium polysulfides and functional separator for greatly improved lithium-organosulfur batteries performance. *Advanced Energy Materials*, 2019, **10**: 1902695.
- [2] LI H, ZHAO M, JIN B, *et al.* Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries. *Small*, 2020, **16**: 1907464.
- [3] WANG P, LI X Y, SHI Z L, et al. Synergistic effect of Ag and Ag₂O on photocatalytic H₂-evolution performance of TiO₂. Journal of Inorganic Materials, 2020, 35(7): 781–788.
- [4] ZHANG Y Q, ZHANG S J, WAN Z R, et al. RuFe nanoparticles modified sheet-like BiVO₄: high-efficient synergistic catalyst for ammonia borane hydrolytic dehydrogenation. *Journal of Inorganic Materials*, 2020, **35**(7): 809–816.
- [5] LI J, CHEN W, ZHAO H, et al. Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. *Journal of Catalysis*, 2017, **352**: 371–381.
- [6] WANG Z L, YAN J M, WANG H L, et al. Au@Pd core-shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation

from formic acid. Journal of Materials Chemistry A, 2013, 1: 12721–12725.

- [7] CUI C Y, TANG Y J, ZIAEE M A, *et al.* Highly dispersed ultrafine palladium nanoparticles enabled by functionalized porous organic polymer for additive-free dehydrogenation of formic acid. *ChemCatChem*, 2018, **10**: 1431–1437.
- [8] GUO S L. Ge nanoparticles in MXene sheets: one-step synthesis and highly improved electrochemical property in lithium-ion batteries. *Journal of Inorganic Materials*, 2020, 35(1): 105–111.
- [9] ZHANG Y Q. Preparation and dehydrogenation property of NH₂-UIO-66 supported RuCuMo nanocatalyst. *Journal of Inorganic Materials*, 2019, 34(12): 1316–1324.
- [10] YAN J M, LI S J, YI S S, et al. Anchoring and upgrading ultrafine NiPd on room-temperature-synthesized bifunctional NH₂-N-rGO toward low-cost and highly efficient catalysts for selective formic acid dehydrogenation. Advanced Materials, 2018, 30: 1703038.
- [11] LIN Q M, CUI J G, YAN X, et al. First-principles study on electronic structure and optical properties of single point defect graphene oxide. *Journal of Inorganic Materials*, 2020, 35(10): 1117–1122.
- [12] ZHANG F. A new polyethylene composite material based on nano silver particels loaded graphene oxide. *Journal of Inorganic Materials*, 2019, 34(6): 633–640.
- [13] DUAN J M, XIANG Z Q, ZHANG H S, et al. Pd-Co₂P nanoparticles supported on N-doped biomass-based carbon microsheet with excellent catalytic performance for hydrogen evolution from formic acid. Applied Surface Science, 2020, 530: 147191.
- [14] RANA S, JONNALAGADDA S B. A facile synthesis of Cu-Ni bimetallic nanoparticle supported organo functionalized graphene oxide as a catalyst for selective hydrogenation of *p*-nitrophenol and cinnamaldehyde. *RSC Advances*, 2017, 7: 2869–2879.
- [15] IMANI R, EMAMI S H, FAGHIHI S. Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications. *Physical Chemistry Chemical Physics*, 2015, **17**: 6328–6339.
- [16] SHU D, FENG F, HAN H L, et al. Prominent adsorption performance of amino-functionalized ultra-light graphene aerogel for methyl orange and amaranth. *Chemical Engineering Journal*, 2017, **324:** 1–9.
- [17] FAN Z J, KAI W, YAN J, et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano, 2011, 5(1): 191–198.
- [18] HOU Y, ZHANG B W, XING R G, et al. One-step synthesis and electrochemical properties of reduced graphene oxide/MnO₂ composites. *Journal of Inorganic Materials*, 2015, 30(8): 855–860.
- [19] KANNANGARA Y Y, RATHNAYAKE U A, SONG J K. Hybrid supercapacitors based on metal organic frameworks using p-

phenylenediamine building block. *Chemical Engineering Journal*, 2019, **361:** 1235–1244.

- [20] ZHANG L, ZHANG J W, KUANG Q, et al. Cu²⁺-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. *Journal of the American Chemistry Society*, 2011, 133: 17114–17117.
- [21] LAI L F, CHEN L W, ZHAN D Z, et al. One-step synthesis of NH₂-graphene from *in situ* graphene-oxide reduction and its improved electrochemical properties. *Carbon*, 2011, **49**: 3250–3257.
- [22] NOURUZI N, DINARI M, MOKHTARI N, et al. Selective catalytic generation of hydrogen over covalent organic polymer supported Pd nanoparticles (CoP-Pd). *Molecular Catalysis*, 2020, 493: 111057.
- [23] ALAMGHOLILOO H, ROSTAMNIA S, HASSANKHANI A, et al. Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: synergic boost to hydrogen production from formic acid. Journal of Colloid and Interface Science, 2020, 567: 126–135.
- [24] YIN B, ZHAO E F, HUA X L, et al. Ultrafine PdAg nanoparticles immobilized on nitrogen-doped carbon/cerium oxide for superior dehydrogenation of formic acid. New Journal of Chemistry, 2020, 44: 2011–2015.
- [25] ZIAEE M A, ZHONG H, CUI C Y, et al. Additive-free hydrogen generation from formic acid boosted by amine-functionalized imidazolium-based ionic polymers. ACS Sustainable Chemistry & Engineering, 2018, 6: 10421–10428.
- [26] JIANG Y Q, FAN X L, CHEN M, et al. AuPd nanoparticles anchored on nitrogen-decorated carbon nanosheets with highly efficient and selective catalysis for the dehydrogenation of formic acid. *The Journal of Physical Chemistry C*, 2018, **122**: 4792–4801.
- [27] ZHANG Z J, LUO Y X, LIU S W, et al. A PdAg-CeO₂ nanocomposite anchored on mesoporous carbon: a highly efficient catalyst for hydrogen production from formic acid at room temperature. *Journal of Materials Chemistry A*, 2019, **7**: 21438–21446.
- [28] LI Z P, XU Q. Metal-nanoparticle-catalyzed hydrogen generation from formic acid. *Accounts of Chemical Research*, 2017, 50: 1449–1458.
- [29] BI Q Y, LIN J D, LIU Y M, et al. Dehydrogenation of formic acid at room temperature: boosting palladium nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon. Angewandte Chemie International Edition, 2016, 55: 11849–11853.
- [30] LI S J, ZHOU Y T, KANG X, et al. A simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid. Advanced Materials, 2019, 31: 1806781.
- [31] MORI K, NAKA K, MASUDA S, et al. Palladium copper chromium ternary nanoparticles constructed *in situ* within a basic resin: enhanced activity in the dehydrogenation of formic acid. *ChemCatChem*, 2017, 9: 3456–3462.